
Phyllis Schwaiger

Morgan Maxwell

Koin is the Kotlin Multiplatform (KMP)
integration framework.

You can write code once and deploy it on
multiple platforms, with KMP as the main
cross-platform technology, and Koin as the
Dependency Injection framework.

Koin offers a fully Kotlin-centric approach,
leveraging the language's features and syntax
to provide a simpler and more intuitive DI
experience.

Kotlin Multiplatform (KMP)
Cheat Sheet

Multiplatform Application Setup

Koin Annotations & KMP

Add the  

Take a look at the Kotlin KMP getting started guide to
help start your new Kotlin Multiplatform application

For Koin setup instructions, please refer to the Koin
Setup page.

Koin Dependency Injection in
Shared Code

And implement your module, following your
platform-specific needs:

Starting Common & Native ModulesImplementing Native Dependency
Modules

It’s also possible to define a Koin module, for a
specific platform. Use the

After defining your common Koin modules and
implementing the necessary native modules,
initiate dependency initialization by invoking
your native module from the shared code:

To integrate Koin Annotations into your KMP project,
begin by following the KSP guide from Google.

JVM

iOS

Gradle koin-core or  koin-test

dependency to your KMP project.

 &
After integrating the Google KSP plugin, add the

 dependencies to your KMP setup. Detailed steps can
be found in this tutorial.

 koin-annotations koin--ksp-compiler

constructor injection

interface can KoinComponent

Koin is a pure Kotlin framework. It interacts
naturally with your Kotlin shared code project the
same way as your JVM or Android project.

Define Koin modules for the needed classes to
inject into your application.

We recommend utilizing
whenever possible.
Alternatively, the
assist in dependency injection through properties.

 ,singleOf

You can use as well,Constructor DSL

with keywords such as factoryOf

Kotlin keyword actual

to define it:

https://www.jetbrains.com/help/kotlin-multiplatform-dev/get-started.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/get-started.html
https://insert-koin.io/docs/setup/koin/
https://insert-koin.io/docs/setup/koin/
https://www.jetbrains.com/help/kotlin-multiplatform-dev/get-started.html
https://kotlinlang.org/docs/ksp-multiplatform.html
https://insert-koin.io/docs/quickstart/kotlin-annotations/

insert-koin.io

Injecting with ViewModels and KMM-
ViewModel

Kotlin Multiplatform (KMP)
Cheat Sheet

Injecting Dependency - Wrapper Strategy

One way to begin injecting Koin dependencies into your
iOS code is by creating a designated function to retrieve
your dependency. In this example, we'll define

Here's how you can implement this in Swift:

Injecting Dependency - Koin Component
Strategy
An alternative method involves using the

In Swift iOS, we can use it in a native component:

To achieve this in iOS, simply implement the code below:

Injecting iOS dependencies in Koin
You may need to pass data from the iOS platform to the
Koin dependencies. The best is always to rely on KMP
Libraries, to have KMP API ready to be used for your
code.

To call the Kotlin function from iOS, ensure that you use
the appropriate native object parameter:

getKMMViewModel to be used in your Swift code:

 interface to inject properties into a KoinComponent

 class that will be manually instantiated:

Utilizing Koin in the Android/JVM realm allows for direct
benefits such as constructor injection or the use of the

extensions, which enables Koin to retrieve inject

the necessary dependencies:

You can declare a ViewModel, usage across Android
and iOS with KMM-ViewModel.

For this, incorporate the class for KMMViewModel()

your ViewModel:

Then, declare it in your Android module and use it in the
“classical” way, with by viewModel :

Sample code for providing to the NSUserDefaults

KMP Settings library is shown below:

https://insert-koin.io/
https://github.com/rickclephas/KMM-ViewModel

