
Koin Compose - Koin 3.5

Cheat Sheet

Insert-koin.io

Now Available
Koin 3.5 Long-Term Support: offering professional
support, updates, bug fixes, and security patches for
18+ months.

Koin is developed by Kotzilla and
open-source contributors

kotzilla.io

Isolated Context with Compose
In case of applications like SDK & White Labels, you
may need to isolate your application from a consumer
application that will use your features.

To isolate your context you need to declare a specific
variable for you context, with koinApplication. Like
here:

// Hold in an Object, Dedicated holder…
val IsolatedContext = koinApplication {
 // Context Config
}.koin

Now use this context to wrap your Composable content,
using KoinIsolatedContext and your Koin isolated
context variable:

@Composable
fun IsolatedApp() {

 KoinIsolatedContext(IsolatedContext) {
 // App Content ...
 }
}

Set Up Compose and Koin
Your project configuration can be done with koin-
androidx-compose packages for an Android application,
or koin-compose package if you are using it for a Kotlin
Multiplatform project.

// Koin for Jetpack Compose
io.insert-koin:koin-androidx-compose
// Koin for Jetpack Compose Navigation
io.insert-koin:koin-androidx-compose-navigation
// Koin for Compose Multiplatform
io.insert-koin:koin-androidx-compose

Look at insert-koin.io website for the latest versions.

You can either use the Koin DSL or Koin
Annotations to configure your application. The
following API lets you inject your dependencies into
Composable functions

Injecting inside a Composable
A dedicated API for Compose is available, to let you
benefit from the system features. To inject a dependency
inside a Composable function, you can use inject with
koinInject as parameter:

@Composable
fun MyComposable(
 myFactory : MyFactory = koinInject()
) {

 // ...
}

or in the function body:

@Composable
fun MyComposable(
) {

 val myFactory = koinInject<MyFactory>()
}

Koin is a Kotlin integration framework to help you build
any kind of Kotlin application, from Android mobile
to backend Ktor server applications, including Kotlin
Multiplatform and Compose.

Component State ~ State Holder
-

Screen Level State ~ ViewModel

Recomposition
By default the use of koinInject allows your
dependency to benefit from the Compose cache, and
won’t trigger any recomposition when using it.
If you want to allow recomposition while resolving
a dependency, you need to trigger it by a dynamic
parameter by using parametersOf

@Composable
fun ClickCounter(
 clicks: Int,
 onClick: () -> Unit
) {
 // Dynamic parameter injection into MyFactory instance
 val myFactory = koinInject<MyFactory> { parametersOf(“$clicks”)
}
}

Injecting a ViewModel
Inject a ViewModel component inside a Composable is
also very easy. Just use koinViewModel function in
your Composable parameter or body.

@Composable
fun MyComposable(
 myVM : MyViewModel = koinViewModel()
) {
 // ...
}

Note that a ViewModel instance is bound to underlying
lifecycle component (Activity, Fragment …), not to the
Compose cache system.

ViewModel or State Holder?
What to choose between a ViewModel or a factory

State hoisting: This is a pattern where you lift the state
up to a higher-level Composable and pass it down to
child Composables as parameters. This allows you to
manage the state in a more centralized manner. This
implies to use a factory instance to be injected to your
Composable, to hold your state.

ViewModel: You can use the ViewModel architecture
component to manage state in Jetpack Compose
applications. ViewModels provide a way to store and
manage UI-related data in a lifecycle-aware manner.

Running Koin Application from Compose
A Koin application context can be started directly
from a Composable function, with KoinApplication
component like this:

@Composable
fun MyComposable() {

 KoinApplication(application = { /* Koin Config ... */ }) {

 // Content running under Koin context
 }
}

This allows your Composable function to behave
like an application starting point, and pass your Koin
configuration. Note that if you are already using
startKoin you don’t need to use KoinApplication
component.

Preview Composable with Koin Content
A good usage of KoinApplication is to help preview
content that is relying on Koin container. Combine it with
@Preview annotation, this will help you create a Koin
context for this Composable. Having a dedicated “test
module” for it is also a good practice:

@Preview
@Composablefun MyPreviewComposable() {

 KoinApplication(application = { modules(testModule) }) {

 // Content running under Koin context
 MyComposable(...)
 }
}

Dynamic Modules Load
Compose and Koin can together help you load Koin
modules thanks to the rememberKoinModules function.
This will trigger Koin module load at first creation of your
Composable.

@Composable
fun App() {

 rememberKoinModules(modules = { listOf(appModule) })

	 // content ...
}

Koin modules unload is can be also triggered when this
Composable, making this component as a dynamic entry
point for your app. Use the unloadModules parameter
to set the behavior. The unloadOnForgotten and
unloadOnAbandoned can allow to let you drop modules
on the right moment.

