In Swift i0OS, we can use it in a native component:

class KMMViewModel

private let repository: KMMRepository
init(repository: KMMRepository
self.repository = repository

You can declare a ViewModel, usage across Android and
i0S with KMM-ViewModel.

For this, incorporate the KMMViewModel() class for your
ViewModel:

open class ViewModelShared : KMMViewModel KoinComponent
private val repository: Repository by inject

Then, declare it in your Android module and use it in the
“classical” way, with by viewModel

val appModule = module
viewModule { ViewModelShared

val viewModel by viewModel<ViewModelShared>()

To achieve this in i0S, simply implement the code below:

struck ContentView View
@StateViewModel var viewModel = ViewModeleShared

You may need to pass data from the iOS platform to the
Koin dependencies. The best is always to rely on KMP
Libraries, to have KMP API ready to be used for your
code.

Sample code for providing NSUserDefaults to the
KMP Settings library is shown below:

fun initKoinIos

ud: NSUserDefaults
¢ KoinApplicationn = iniKoin

module
signle<Settings> { NSUserDefaultsSettings (ud

To call the Kotlin function from iOS, ensure that you use
the appropriate native object parameter:

func startKoin

let userDefaults = UserDefaults(suiteName: “KAMPSTARTER_SETTINGS”)!

let koinApplication = KoinIOSKt.doInitKoinIos
userDefaults: userDefaults

Insert-koin.io

EFﬂE]

Now Available

Koin 3.5 Long-Term Support: offering professional
support, updates, bug fixes, and security patches for
18+ months.

O koin

Kotlin

€ koin

¥ Kotlin

Multiplatform
Cheat Sheet

¢ Kofzlla

Koin is developed by Kotzilla and
open-source contributors

& kotzilla.io



Koin is the Kotlin Multiplatform (KMP) integration
framework.

You can write code once and deploy it on multiple
platforms, with KMP as the main cross-platform

technology, and Koin as the Dependency Injection
framework.

Koin offers a fully Kotlin-centric approach, leveraging the
language’s features and syntax to provide a simpler and
more intuitive DI experience.

Take a look at the Kotlin KMP getting started guide
to help start your new Kotlin Multiplatform application

For Koin setup instructions, please refer to the Koin
Setup page.

Add the koin-core or koin-test Gradle dependency
to your KMP project.

To integrate Koin Annotations into your KMP project,
begin by following the KSP guide from Google.

After integrating the Google KSP plugin, add the
koin-annotations & koin--ksp-compiler
dependencies to your KMP setup. Detailed steps can be
found in this tutorial.

Koin is a pure Kotlin framework. It interacts
naturally with your Kotlin shared code project the
same way as your JVM or Android project.

Define Koin modules for the needed classes to
inject into your application.

We recommend utilizing constructor injection
whenever possible.

Alternatively, the KoinComponent interface can assist
in dependency injection through properties.

Kotlin ~

fun commonMudule() = module
single { createJson
Single { createHttpClient(get get

You can use [l Igl I as well, with keywords
Y singleOf M factryOf. .

It's also possible to define a Koin module, for a specific
platform. Use the actual Kotlin keyword to define it:

Kotlin ¥

// in common code

expect fun platformModule(): Module

And implement your module, following your platform-
specific needs:

JVM

Kotlin v

// JVM implementation
actual fun platformModule() = module
single
val driver = JdbcSqliteDriver(...
PeopleInSpaceDatabase(driver

single { Java

ios

Kotlin v

// 10S implementation
actual fun platformModule() = module
single
val driver = NativeSqliteDriver(...
PeopleInSpaceDatabase(driver

single { Darin.create

After defining your common Koin modules and
implementing the necessary native modules, initiate
dependency initialization by invoking your native module
from the shared code:

Kotlin v

// in common shared code
fun initKoin() =
startKoin

modules (commonModule platformModule

One way to begin injecting Koin dependencies into
your iOS code is by creating a designated function to
retrieve your dependency. In this example, we'll define
getkMMViewModel to be used in your Swift code:

Kotlin v

// in common code
object KotlineDependencies : KoinComponent
fun getkKMMViewModel() = getKoin.get<KMMViewModel>

Here's how you can implement this in Swift:

Swift v

// use KotlinDependencies in Swift
class ObservableViewModel: ObservableObject
private var vm: KMMViewModel

func activate
let vm = KotlinDependencies.shared.getKMMViewModel

An alternative method involves using the
KoinComponent interface to inject properties into a
class that will be manually instantiated:

Kotlin v~

// Define a Common Component
class KMMRepository : KoinComponent

private val KMMRemoteApi: KMMRemoteApi by inject

Utilizing Koin in the Android/JVM realm allows for direct
benefits such as constructor injection or the use of the
inject extensions, which enables Koin to retrieve the
necessary dependencies:

Kotlin v

// in Android ViewModel
class KMMViewModel
private val KMMReposotory: KMMRepository
¢ ViewModel



